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J .  Phys. A: Math. Gen. 18 (1985) 749-764. Printed in Great Britain 

On the exact reduction of a univariate catastrophe to normal 
form? 

F J Wright$ and G Dangelmayr 
Institut fur Informationsverarbeitung, Universitat Tubingen, Kostlinstrasse 6, D-7400 
Tubingen I ,  West Germany 

Received 16 July 1984 

Abstract. Quantitative applications of elementary catastrophe theory require exact determi- 
nation of the equivalence transformations involved. Let &(s; c) be an unfolding (which 
need not be universal) in c e R K  of a cuspoid singularity A, in S E R .  We discuss its 
reduction via a sequence of coordinate transformations to normal form, exact to degree 
m in the control variables c, and show that this requires knowledge of the terms of I$ only 
to degrees I in c and j in s satisfying ( I -  m - I ) k + j +  1 s 0. The ‘linear normal form’, 
which describes the orientation and shear of the bifurcation set, is discussed in detail, and 
normal form methods for deriving tangent spaces and curvatures of singularity manifolds 
are described, with examples. 

1. Introduction 

An important application of elementary catastrophe theory is in determining not only 
the topological, but also the metrical, behaviour of a system by relating it to the 
appropriate normal form. The simpler normal forms have now been studied in some 
detail-for the general background see e.g. Poston and Stewart (1978). A particularly 
good example of this type of application is the asymptotic evaluation of oscillatory 
integrals by ‘uniform approximation’ (Duistermaat 1974, Berry 1976, Connor 1976). 
Such applications require that part, at least, of the transformation to normal form be 
determined in some sense exactly. For the uniform approximation problem some fairly 
elaborate exact methods have been developed by quantum chemists (Uzer and Child 
1982, Connor et a1 1984) with a view to numerical evaluation of the control-space 
mapping. We are concerned with the algebraic aspect of the transformation, and the 
analysis presented here arose in connection with a study of caustics generated by line 
sources or edges of wavefronts (Dangelmayr and Wright 1985), in which some of the 
caustic geometry is determined by relating it to the canonical bifurcation geometry. 

Most of the discussions of reduction to normal form in the physical literature tend 
to involve ad hoc reductions for specific problems, and those in the mathematical 
literature are concerned with existence proofs or with singularities only. The existence 
of transformations to normal form was first proved by Mather (1968), but we are not 
aware of any previously published algorithms for constructing the transformations. A 
constructive proof of the splitting lemma was given by Gromoll and Meyer (1969) in 
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750 F J Wright and G Dangelmayr 

a Hilbert-space formulation, and was presented in a finite-dimensional form by Poston 
and Stewart (1978), but this does not give a reduction to normal form. An explicit 
algorithm derived from the present analysis, which w e  believe should be easily and 
directly implementable using computer algebra, is given by Wright and Dangelmayr 
(1985). 

We shall restrict our attention to the simplest case-unfoldings of singularities in 
univariate functions . Specifically, let s E R  be the physical state variable, c E R K  the 
physical control variable (vector), and suppose that +(s; c)  is an unfolding of an Ak 
singularity (Arnol’d 1975, see also ( I )  below for a definition) at s=O,  c=O.  The 
problem is to find a transformation s + s’( s ; c), whose existence is guaranteed by the 
general theory, that reduces 4 to the normal form 

k - l  

4 ( s ;  c ) = r $ ’ ( s ’ ;  c ) = A ( c ) +  u ~ ( c ) s ” * s ’ ~ + ’  
j = l  

and thereby generates the ‘unfolding functions’ u j ( c ) ,  which must satisfy u j ( 0 )  = 0. 
The complete ‘right-equivalence’ that transforms 4(s ;  c)  into normal form is the set 
of maps 

~ ‘ ( s ;  c ) ,  {u j (C)>; i : ,  A(c), 

of which all but A(c) must satisfy certain rank conditions (see e.g. Wassermann (1974) 
for the versal case). Although we shall not do so here, it is not hard to show that the 
construction given below does satisfy the rank conditions. (This has been proved in 
detail by Karl Millington, private communication, for the specific algorithm given by 
Wright and Dangelmayr (1985).) We do not assume $(s; c)  to be a universal or even 
a versal (stable) unfolding; hence we do not require K = k - 1 (see especially § 8). 

Most commonly in practice one is interested only in the unfolding functions U,( c), 
and perhaps also in the shift-term A(c), so that the transformation s’(s; c)  need be 
determined only as far as necessary to find these functions. This point of view is 
implicit in our analysis. Generally, it is impossible to find any of these functions in 
closed form, so one has to settle for their Taylor polynomials in c to some finite degree 
m. We assume that it is known in advance what is a sufficient value of m (often this 
will be 1 or 2 ) .  We return to the important special case m = 1 in 0 7. 

In §§ 2-4 we decompose the reduction process into a number of simple steps, each 
of which has a specific effect in relation to the normal form. We find this decomposition 
to be the best way to gain an understanding of the reduction process, and we have 
also found it to be convenient to implement by hand in simple cases. For example, 
in our line source study (Dangelmayr and Wright 1985) we needed to determine all 
linear terms, plus some particular quadratic terms that determine the caustic curvatures, 
in the reductions to normal form of fold, cusp and swallowtail catastrophes. 

A major result, derived in § 5 ,  is that in order to determine the normal form to 
degree m in c, it is necessary and sufficient to know the terms of #I to maximum degree 
( m  + l ) k  - 1 in s ; specifically to degreesj in s and 1 in c satisfying ( 1  - m - 1)k + j + 1 c 0. 
Hence to determine even the complete linear behaviour of the unfolding it is necessary 
to consider all terms up to degree ( 2 k -  1) in s. This is despite the fact that an Ak 
singularity is ( k  + 1)-determined, which emphasises that determinacy applies only to 
singularities, and not to unfoldings. 

In § 6 we mention alternative algorithms and uniqueness of the reduction, and 
analyse the degree to which the state-space mapping s + s‘(s; c)  must (in principle) 
be determined in order to determine the normal form to degree m in c (and hence the 
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degree to which it is available as a by-product of a reduction algorithm). Sections 7 
and 8 provide examples of 'metrical catastrophe theory'. In § 7 the 'linear normal 
form' and the shearing effect of the O(sk+')  'tail' of the unfolding (defined in (1) 
below) are analysed in detail, and illustrated by an example calculation of the evolute 
of a simple plane curve. In 8 8 we present general techniques, based on reduction to 
normal form, for determining tangent spaces and curvatures of singularity manifolds, 
or specific strata of bifurcation sets, such as ribs (cusped edges) in 3-space. We give 
two example calculations, the second of which actually involves two state variables 
and hence the splitting lemma. 

2. Reduction to normal form in practice 

We shall make considerable use of the terms order and degree, which we define as 
follows. For x E R", let O ( x p ) ,  H(xp),  D ( x P )  respectively denote any function of order 
p ,  homogeneous degree p ,  degree p in x ;  that is, any function depending on x only 
through terms of the form 

respectively and x, is the ith component of x ER". For n = 1 these definitions take their 
familiar standard forms. 

The starting point for the reduction is the Taylor expansion of 4 about s = 0;  we 
name the body and tail segments of this unfolding as shown in (1): 

k 5 

4(s; c ) = 4 0 ( c ) +  4 j (C)s '+4k+l(C)sk+'+  1 4,(C)s1* (1 )  
]=I i = k + 2  

body 
U 

tail 

To have an Ak singularity at s=O, c=O,  as we shall assume, the Taylor coefficients 
must satisfy 

dj(0) = 0 for I C ~ S  k and +k+1(0) # 0. 

The practical restatement of the reduction problem that we study is to reduce 4 
to the form 

k -  I 
4(s; c )  = +'(s'; C )  = A ( c ) +  U ~ ( C ) S ' J * ~ S ' ~ + ' + O ( C ~ + ' ) .  

j =  I 

A priori, it suffices to work throughout to D(c") .  The reduction can be conveniently 
decomposed into a number of steps, which are illustrated in figure 1 (but ignore the 
stepped boundary until 0 S), each of which has a specific effect. There are two major 
stages. 

Stage 1 .  Remove the 0 ( s k + ' )  tail from (1) .  We perform this iteratively to successively 
higher orders in c until what is left ( O ( c " ) )  can be simply discarded. 

Stage 2. (a) Reduce 4 k + l ( C )  to 
the form s + s + a ( c ) .  

to rescaling s ;  (b) Remove &(C)sk  by a shift of 
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Once stage 1 has been performed, stage 2 cannot produce any new tail terms, so stages 
1 and 2 must be performed in that order. Stages 2(a) and (b) may be performed in 
either order. 

I ( c-power) 

. . . .  . . . . .  

. , . . . . . . . 

1 
0 

1 k- I  k+l  
(m- l ’ )k  I mk I 

mk-1 I m + l ) k - l  

-power 1 

Figure 1. The ‘term lattice’: the point ( j ,  [)  represents &,,,, the part of the Taylor coefficient 
of homogeneous degree l in c. The step-sided ‘term triangle’ shows those ‘terms’ that 

determine the normal form to degree m in c, where terms in the doubly hatched region 
are necessarily absent (i.e. zero). Any terms originating or produced outside this triangle 
may be simply discarded. Each diagonally hatched ‘tongue’ is removed by the stage 1 
transformation shown. The horizontally hatched column with j = k + 1 is removed by stage 
2(a) ;  the vertically hatched column with j = k is removed by stage 2(b). The three unhatched 
areas left inside the term triangle represent the three distinct parts of the normal form, 
namely, from left to right, 

h ( c ) ,  { u , ( c ) s ” } f : ~  and s J k + ’ .  

To avoid a notational catastrophe, we shall only keep track of the component 
transformations making up the complete reduction during our discussion of stage 1 .  
Otherwise, we make only a very local distinction between any quantity and the result 
of transforming it. Thus at every step of the transformation we represent $ in the 
form ( l ) ,  but allow the coefficient functions 4 j ( c )  to change until finally ( I )  takes the 
form ( 2 ) ;  these different versions of 4 are all right-equivalent. 

3. Reduction stage 1 

The tail x F = k + 2  $,(c)s’ is removed from ( I )  by essentially absorbing it into the term 
4 k + l ( C ) s k + ’ .  If the body It=, $,(c)s’ of ( 1 )  were absent, this could be immediately 
accomplished by simply defining a transformation s + s’ implicitly by 

3) 

$k+l(C)s‘k+’ = c $,(c)s’.  
j = k + l  

Explicitly, this transformation has the form 
W 

s = s‘+ c t : ( c ) s ” .  
i = 2  

(3) 

(4) 

Typically 4,( c )  = O( 1 ) for J 2 k + 1, so that also t , ( c )  = O( 1 ) for all i. 
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However, if transformation (4) is applied to the unfolding body in ( l ) ,  it generates 
a new tail. But because every s', 1 S j  C k, in the unfolding body is multiplied by 
4,(c) =O(c) ,  this new tail is O(c).  Thus the effect of applying (4), determined solely 
by the tail of ( I ) ,  to the whole of (1)  is to replace the O(1) tail by an O(c) tail. The 
transformation (4) that would remove this O(c) tail in the absence of an unfolding 
body will then have t,(c) = O(c), and will generate from the unfolding body a new tail 
that is O(c2).  Clearly, the tail can be removed to any desired degree in c by iterating 
this process. 

Let us denote the nth iteration of transformation (4), which transforms the O(c"-') 
tail into an O(c") tail, by 

cc 

T,,: s , , - ~  = s, + c fl,,-l(c)sk ( 5 )  
, = 2  

where so= s, and let us denote the result of applying T, by 4(,,)(s,,; c), whose tail is 
O(c"). Then T,,4(n-1)(s,,-l; c )  = ~$(")(s,,; c), where 4 " ) ~  4. The terms removed by 
each T, are illustrated in figure 1. The coefficients r l ,n- l (c)  are O(c"-'), but since T,, 
only removes the H(c"-l) terms of the tail it suffices to make tt,,,-l(c) = H(c"-l) and 
define T,, solely in terms of the H(c"-l) part of the tail of d'"-l'. Let us define +:,:)(c) 
to be the H(c') part of C$:"'(C). 

Although we do not presently need an explicit representation for T,, it is interesting 
to see how easily T,, may be constructed. For n 3 2, T,, may be defined by requiring 

From (5), 
X 

s',,-~ =sJn+js'il C (c)s:, + O( c2("-')). 
! = 2  

Substituting this into (6) gives 
X X 

+ki- l ,O(  s :+ '+(k+l)sf :  , = 2  C t i ,n - l (c )s . )  ~,,,n-l(C)S'~+O(C2(n-1)) 

= +k+l,OS:+' + o( c"). 

By equating coefficients of sk for n Z 2 the coefficient functions of T,, are determined 
explicitly to be simply 

lg,n- I ( c) = - 4 k r i , n  - I ( c)/  ( k + 1 ) + k +  I .O (na2). ( 7 )  

TI has to be treated slightly differently; an explicit implementation of T,, (slightly 
different from that above) for all n is given by Wright and Dangelmayr (1985) (see 
especially algorithm A in § 4). 

4. Reduction stage 2 

Suppose the tail of 4 has been completely removed by stage 1, leaving 
k 

c ) = 4 0 ( c ) +  c d',(C)s'+4k+l(C)Sk+l. 
i = l  
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Stages 2(a) and (b) may now be performed in either order; for generality we treat 
each as though it is performed first. The terms that each removes are illustrated in 
figure 1 .  

Stage 2.(a). & + l ( C )  is reduced to i l  by the transformation 

(9a)  

The coefficient of s' has a well defined series expansion in c because &+l(0) f 0 (by 
assumption). This transformation does not affect &,(c), so because +,(c) = O(c) for 
1 s j s  k, transformation (9a)  and hence & + l ( ~ )  are required for stage 2(a) only to 
D(c"-') in order that (8) remain accurate to D(c"). Hence (9a)  may be implemented 
by expanding up to D(c"-'), and its effect is to multiply each c$,(c), 1 s j s  k, by a 
factor O( 1 ). This produces a nonlinear, orientation-preserving, differential scale change 
in the final unfolding functions u j ( c ) .  

l / ( k + l ) s r .  s = ICbk+l(C) l  

Stage 2.(b). & ( c ) s k  is removed by the transformation 

s = s ' +  a ( c ) ,  (96) 

(If stage 2 (  a)  has already been performed than 4k+l (c)  = * 1 .) As 
& ( c )  = O(c), it follows that a ( c )  = O(c). The effect of transformation (9b) is that 

( c )  = O( 1 ) and 

d/(C)+ d;(c) = ? I (  I=] ;)dl(cl(LY(c))~-~ V O s j s  k +  1.  ( 1 1 )  

Hence & + l ( C )  is unchanged, & ( C ) + o ,  and for all O s j S  k -  1, ~ , + ~ l ( c ) + o ( c 2 ) .  In 
preparation for determining curvatures (cf § 8), we note that for 0 s  j S k -2, the 
quadratic additions to qb1 come from transforming the term of next highest degree 
(s'+I), whereas quadratic additions to & - I  come from transforming both s k  and sk+l 
since d k + l ( C )  = O ( l ) .  

Transformation (1 1 )  must be implemented to D(c"). Because a ( c )  contributes to 
the normal form via ( 1  1 )  either multiplied by +,(c) = O(c) for 1 s i s k or raised to a 
power of at least 2 when multiplied by & + l ( C )  = O( l ) ,  it is required only to D(c"-'). 
Consequently &( c )  and & + I  (c)  are required only to D( c m - l )  in determining a (c ) .  
Furthermore, 4 k ( ~ )  contributes directly to the normal form only via ( I  l ) ,  in which it  
is multiplied at least once by a(c )=O(c ) ,  and so again is required only to D(c"-'). 

5. Finite degrees 

We now establish that, because the normal form is required only to finite degree m in 
c, the infinite series (5)  representing each stage 1 transformation T, may be truncated. 
This leads to the following theorem. 

Theorem I :  Normal form degree theorem. For Ik C j < ( I  + 1) k with 0 s I s m, the normal 
form for 4 ( s ;  c)  to D(c"') is completely determined by the coefficient functions 4 j ( c )  
to D(c"-'). 
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This important result is illustrated in figure 1. In particular, $ j ( c )  is not required at 
all f o r j  2 ( m  + l)k, so that the Taylor expansion of 4 is required only to D ( ~ ( ' " + l ) ~ - l  1. 

ProoJ: The key to establishing the proof is the following observations: 
(a) For l ~ j ~ k ,  4j" ' (c) isO(c) ,  4 ' ," , ' , (c) isO(l)and,for j2  k+2,4 jn ' (c ) i sO(c") .  
(b) T,, applied to s i - ,  generates new terms that are O(s',,+') only, and T,, is 

determined only by the tail of dcn-l'.  
(c) Because T, (cf (5 ) )  is O(s,,), if 4jp' (c)  is required to D(c'), then so is 4 j 4 ) ( c )  

for all q c p .  
The sufficient degrees are best established by working backwards, and frequent 

reference to figure 1 should help in following the argument. 
It was established in 0 4 that stage 2 of the transformation requires 4J to D(c") 

for 0 sj s k - 1 and to D( c"-l) for k c j S k + 1, so this is what stage 1 must generate. 
T,,,+l, is 1, generates new terms that are O(c"") only (cf ( 5 ) ,  Q 3) ,  so the last 
transformation that need be applied is T,. T,,, generates new terms that are O(c"), 
but 4;"') and $J',"+: are required only to D(c"-'). Also the tail of d t m )  is not required 
at all because T,,, is not required. Therefore, the effect of T, is required only to 
D(sk-l), so T,,, itself is required only to D(sk-') .  This is the crucial observation, and 
its effect propagates. 

We have deduced that the polynomial transformation 
k - 1  

T,: s,,,-~ = s, + c t l , m - I ( c ) s ~  
t = 2  

suffices, where t t , m - l ( c )  = H(c"'-'). The (k -2 )  coefficient functions f l , m - I ( ~ )  in T, are 
determined (as in (7) for m 2 2 )  solely by the H(c"-l) parts 4j,zll1'(c) of the first 
( k  - 2) coefficient functions in the tail 

2 k - I  1 4 ; m - 1 ' ( c ) s i - l  
j =  k + 2  

of 4'"'-'). Therefore, for k + 2 ~ j ~ 2 k -  1, 4:"'-')(c), and hence all 4jn'(c)  with 
n c m - 1, are required to D( c"'-l), as shown in figure 1. 

so is Tm- ,. Thus the 
polynomial transformation 

Since the O( cm-I) part of 4("-" is required only to D( 

2k-1  

Tm-l: s,-2=s,-1+ t , , , - 2 ( c ) s ~ - l  
1=2 

suffices, where C ~ , , - ~ ( C )  = H(C"'-~). The (2k -2) coefficient functions t i , m - 2 ( ~ )  are 
determined by the H( c " ' - ~ )  parts 4j,zI;)( c)  of the first (2k - 2) coefficient functions in 
the tail 

3 k - I  c 4 Y 2 )  
j = k + 2  

of 4 ( m - - 2 )  , Therefore, for k + 2 ~ j ~  3k - 1, 4jm-"(c), and hence all 4:"'(c) with 
n 6 m - 2, are required to D(c"-~) ,  (although for k +  2 j s 2k - 1 these coefficients 
are already required to D(c"'-l)) as shown in figure 1. 

Iterating this argument shows that for general 1 c n 5 m, the polynomial transfor- 
mation 

( , + I - n j k - 1  

T,,: s , - ~  = s, + t l , , , - l ( ~ ) s ~  
, = 2  
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suffices, determined solely by the tail terms 
( m - n i - 2 ) k - 1  

4;,;:ysJn -, . 
j = k + 2  

This proves the theorem. 

In particular, 
mk-1 

TI: s = si + c t i , o ( ~ ) s ;  
i = 2  

suffices, determined by 
( m + l ) k - l  

dj.os', 
j = k + 2  

which proves that 4 is required only to D(s(" '+~ '~- '  ) as claimed (see figure 1 ) .  
In applying these transformations, any terms generated outside the 'term triangle' 

shown in figure 1 should be discarded. The overall transformation that removes the tail 
from ( I )  in the presence of the  unfolding body is the composition T = T,,, 0 T,,,-I 0 . . . 0 TI 
with unnecessary terms discarded. It must have the form 

mk-l 
T :  s =  s '+ t , ( c ) s "  

i = 2  

where generally ? , ( c ) = 0 ( 1 )  for all i and, for 2 s l k S i < ( I + l ) k  with O s l s m - 1 ,  
? , ( c )  is required to D(c"-'-'). Clearly T has no effect on &(c).  

6. Discussion 

6.1. Implementation and alternative reduction algorithms 

There are many equivalent ways of implementing an iterative reduction algorithm. 
The version we have discussed above breaks the complete reduction up into a number 
of steps, each of which has a specific effect: removing the tail to a specific degree in 
c, removing &(C) or rescaling 4 k + l ( ~ ) .  The ultimate such decomposition gives an 
algorithm that removes one term from the term lattice of figure 1 at each iteration. 
This version of the algorithm is presented in Wright and Dangelmayr (1985); it gives 
an explicit and uniform algorithm for the whole reduction which is extremely simple 
to state. It also makes clear the extent to which the order of removal of terms is 
arbitrary, and presents an ordering that may be more convenient in practice than that 
which we have discussed here. 

An alternative algorithm has been developed by Millington and Wright ( 1989,  
which makes a direct assault on the multivariate Taylor coefficients of the mappings 
involved. This very low level algorithm is much more complicated to specify and to 
implement, but may well be (much) more efficient, and hence allow more interesting 
problems to be solved in practice. 

6.2. Uniqueness 

Each transformation that was discussed in 0 0  3, 4 preserved the sign of s. Subject to 
the condition that this be so, each transformation is uniquely determined by the result 
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it  is required to produce (otherwise a lot of trivial non-uniqueness arises, most of 
which cancels out in the overall transformation), and is (locally) invertible. This 
suggests that the overall transformation to normal form is unique. However, the order 
in which successive coordinate transformations are applied is not unique-see our 
discussion of stage 2, and particularly that in Wright and Dangelmayr (1985). It 
seems easiest to prove that the reduction is unique (subject to preserving the sign of 
s)  from the Taylor coefficient approach, as done by Millington and Wright (1989, so 
we will not pursue the matter here. 

We are currently considering reduction to normal form of multivariate catastrophes, 
which involves the splitting lemma and/or higher corank singularities. One problem 
that immediately arises is that in this case the reduction is not unique-arbitrary 
parameters appear at every step. (This is similar to the non-uniqueness of unfolding 
monomials for singularities of corank 22-for example, there are two different normal 
forms for the hyperbolic umbilic catastrophe in common use.) 

6.3. The complete transformation 

We have based our algorithms around one part of the reduction to normal form, the 
mapping of the control variables c, to canonical unfolding variables uj, because for 
many applications this is all that is required. We have established that the information 
necessary to'determine this mapping to D( c"') is as stated in theorem 1 and illustrated 
in figure 1. (Note that consequently 4 is not required to be C", but only differentiable 
to the degrees given in ( 1  l ) ,  in order that the reduction to normal form can formally 
be performed. However, the result may then not be meaningful.) 

It  is interesting to ask to what extent this information determines the mapping 
s + s'( s ;  c). The answer is given by the following theorem. 

Theorem 2. Transformation degree theorem. In determining the normal form for +(s;  c) 
to D(c"'), the state-space mapping s + s ' ( s ;  c) must be determined to D(smk-')  in the 
form 

m k - l  

s ' =  t:(c)si 
i = O  

where, for l k c  i < ( l + l ) k  with O c l S m - 1 ,  ti(c) is determined to D(c"-'-'). 

This is, of course, closely related to the normal form degree theorem given in § 5, and 
its proof involves a slight extension of the proof of that theorem. 

Proof: Consider stages 1 and 2 separately and note that s'(s; c) is the composition of 
stages 2(a) and (b) with stage 1. The complete stage 1 transformation T has (from 
12) the form 

CO 

s = tisfi. (13) 
i = l  

Writing its inverse as 

m - 
s i =  t y  

i= I 
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and substituting (13) into (14) gives 

where 

Now equate coefficients of s ' ~ .  Taking p = 1 shows that t l  = I / t l  = 1 (from 12) as 
expected, and  taking p 3 2 gives 

Since 1 s j  s p ,  ( I  5 )  implies that i, s p ,  so that tb is determined by ti  with j < p and t ,  
with i c p .  Hence tb(c) is determined to the maximum degree to which t , ( c )  is known 
for all i s p ,  which is the degree to which t p ( c )  is known since the degree to which 
t ,(c) is known decreases monotonically as i increases. Hence the inverse of stage 1 
alone satisfies the theorem. 

The transformations 4(a and b)  corresponding to stages 2(a and b) respectively are 
trivially inverted and are determined to D(c"-') by & ( C )  and & + ] ( C ) .  Composing 
these transformations with (14) does not reduce the degree to which any term of (14) 
is determined, which is s ( m  - I ) ,  and introduces non-trivial coefficients tb (c)  and t i ( c )  
which are determined to D(c"-').  Hence the theorem is proved. 

7. The linear normal form: orientation and shear 

By the 'linear normal form' we mean the normal form to D(c) .  This is clearly the 
most important special case, and indeed is often all that is required in a normal form 
analysis. For example, it completely determines the orientation and shear of a physical 
bifurcation set relative to its canonical counterpart. This approach has been used by 
Dangelmayr and  Wright (1985) in analysing caustics from a line source, and  essentially 
the inverse of our present approach was used by Nye and Hannay (1984) to analyse 
'the orientations and (linear) distortions of caustics in geometrical optics' in general. 

The linear normal form is determined solely by the truncated expansion 

to D( c)  to D(  CO) 

The term in s k  has been omitted, because it is required only to D(co) yet must be 
O ( c ) ;  in other words, the stage 2(b) transformation that removes the s k  term contributes 
no D(  c )  terms to the normal form, and amounts to simply discarding the sk term. The 
stage 2( a) transformation involves only rescaling s by a constant. 

The only transformation having a non-trivial effect is the tail-removal transforma- 
tion, which comprises the single iteration 

k-1 

TI: s = s'+ 1 tis" 
c = 2  
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where the ti are constants. Once the O(sk+’) tail has been used to determine TI, it and  
all O ( s k )  terms produced by applying TI to the D(sk- ’ )  terms in (16) are simply 
discarded. The end result of applying T,  to each s j  is to add  a contribution of the form 

where the a, are constants, which affects all higher powers of s in the unfolding body. 
Hence T, produces the cascade effect: 

J - I  

4J( ‘ )+4;( ‘ )=  d/14t(c)+4/(c) V l s j s k - 1 .  (17) 
, = I  

After including the stage 2( a )  rescaling, the dependence of the canonical unfolding 
variables {U,} on the physical unfolding functions { + J }  is given by a lower triangular 
ma trix : 

ui = mo4J 
j = l  

where mil = 14k+l(0)l-i’(k+’). Such a linear transformation corresponds to a pure shear 
of R k - ’ .  There will be no shearing only in the non-generic case that the ( k - 2 )  
coefficients q5j(0), k + 2 < j s  2k -  1, all vanish. The only exception is the fold catas- 
trophe, which has k = 2 and could not manifest a shear anyway since it only has one 
unfolding variable. The mapping from ci to 4 / ( c )  is responsible for all rotation (and  
relative changes of sense of the axes), and also contributes to the shear. 

We conclude this section with a simple example that illustrates shearing ‘due to 
the tail’. Let us analyse the evolute of the plane curve C which is the graph of 
y = x 2 +  ax5.  The square of the distance from the point ( x ,  y )  on the curve C to a 
general point ( X ,  Y )  is given by 

(19) 4 ( x ;  x, Y )  = ( X  - X)* + ( Y - x’ - ax’)’. 

We will reduce 4 to linear normal form around the cusp point, which occurs at x = 0, 
X = 0, Y = f. Hence 4 is required to D ( x 5 ) ,  and the relevant terms of (19) are simply 
given by 

(20 )  

where Y ’ =  Y -$,  The tail-removal transformation is easily found to be x = x’+$ax’’, 
which reduces (20) to the form 

4 ( x :  x, Y )  = &(X,  Y )  - 2 x x  - 2  Y ’ x 2 + x 4 -  ux5, 

f$ ( x ; x, Y )  = x, Y )  - 2 x x  ’ - ( 2 Y ’  + a x  / 2) X I 2  + x’4. 

This is exact to linear degree in X and Y ’ ,  and shows that the cusp is sheared by an  
amount depending on U,  despite the fact that the cusp singularity is 4-determinate; 
e.g. if a = 4  the cusp is sheared through 45”. 

8. Singularity manifolds to quadratic degree 

In the introduction we remarked that our reduction algorithm is not restricted to 
universal unfoldings, i.e. versal unfoldings of minimal dimension. In this section we 
consider specifically the case where 4 ( s ;  C )=ZF=~  ~ $ ~ ( c ) s J  is a versal (i.e. stable) but 
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not universal unfolding of an Ak singulaity at (s ; c) = (0; 0) E R X R K ,  so that K > k - 1. 
Then in fact an Ak singularity occurs at all points of a ( K  - k + 1)-dimensional manifold 
in R X R K  containing the origin. The projection s k  of this manifold into [WK iS locally 
smooth; we call it a ‘singularity manifold’, or more specifically an ‘ Ak-manifOld’, e.g. 
an A,-surface or an A,-line in R3. 

The Ak-manifold S k  could be determined by eliminating s from 

dJ4(s ;  c)/ds’ =0,  l s j c k ,  

to give (k  - 1 )  equations in c, since generally the Ak singularity occurs at a Value O f  s 
depending on c. However, if 4 is in normal form (§ 1)  then Sk is given directly by 

(21) * c ’ < k - l  U,(C) = 0, 1 J -  

where {U,( c)} are the ( k  - 1 )  canonical unfolding functions (cf (2)), because in normal 
form the main singularity always occurs at s = 0. 

We aim to find a simple prescription for determining the equation of a singularity 
manifold up to quadratic degree about some point, which we take as the origin. The 
strategy is first to determine the tangent space of S k  at 0 by considering the reduction 
of 4 to linear normal form. This is then used to construct a new coordinate system, 
if necessary, in which it is clear that most transformations in the reduction of 4 to 
quadratic normal form have no affect on the form of S k  up to quadratic degree. For 
applications of the method described here to the determination of tangent spaces and 
curvatures see resp. Wright and Dangelmayr (1984) and Dangelmayr and Wright (1984, 
1985). 

As the diagonal elements of the triangular matrix relating {U,} to { 4,} in ( I8) are 
always non-zero, (21) implies that the equations 4J,I(c) = 0, 1 c js k - 1, determine the 
tangent space of Sk at 0. The vectors 

e, = d4,(0) E [ w ~ ,  1 s j c k -  1, 

are linearly independent by definition-this is the condition for 4(s;  c) to be a versa1 
unfolding. Therefore, {e,};:; span the normal space of s k  at 0, and their orthogonal 
complement in R K  is its tangent space. To determine curvatures, it is most convenient 
to have an orthonormal coordinate system related to the tangent space of Sk. From 
{e,}::: an orthornormal set { 4};:: may be constructed by Gram-Schmidt orthonormali- 
sation in the form 

J 

4 = aJ,e,, l s j c k - 1 ,  
, = I  

where a,, # 0 and a ,  I = / / e l l  etc. This may then be extended into a complete orthonormal 
basis {e?,},”=I for RK. Let 4 be the coordinate along e?,, transform r#~ into these new 
coordinates (if necessary) and drop the tildes, to give 

where bit # 0. 
We define cI = (c l ,  c2,. . . , Ck- l )  and cII = (Ck, . . . , cK), which are respectively the 

coordinates ‘normal’ and ‘tangential’ to S k  at 0. Then S k  may be expressed as the 
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We seek the quadratic terms of the J(cII) .  

observation. Composing (18) with (22) leads to 
The technique is once again to work backwards, making use of the following crucial 

uj = Mi/C,+0(C2) ,  l s j s  k-1, 
/ =  I 

where ( M i , )  is once again lower triangular. The last stage of the calculation will be 
to find the solution of the system (21) in the form (23). Because ui has the above 
form, this solution can be performed iteratively, and any O( c2) terms involving cI will 
generate terms O( c;~) in the solution, which are not required. Hence only terms linear 
in cI alone and quadratic in cII alone are relevant. 

In the following we shall use this notation: 

stage stage 

4, - 4; 7 4;. 
Transformation stage 2(a) only rescales the u i ( c ) ,  which has no effect on the solution 
of (21). Bearing in mind the discussion in § 4, and substituting explicitly for a ( c )  
from (10) into ( l l ) ,  the quadratic terms generated by transformation stage 2(b) are 
given by 

for l ~ j ~ k - 2 ,  and 

From (22), 4(+1, I ( c )  in (24a) depends only on cI {cJ}tZ:  ; hence transformation 
(24a) is irrelevant, because it generates quadratic terms involving cI. The only relevant 
effect of stage 2 is generated through (24b) by those terms in +L(c) linear in cII alone, 
because only these generate terms quadratic in cII alone, and is 

4 L I ( C ) +  4 2 - l ( C )  = 4 L - l ( C )  - kdJ:I(cl= 0, c,1)/2(k+ 1)4L+l ,O .  (25) 

The effect of transformation stage 1 in general has the form 

(cf (17) for the linear normal form), which is again a triangular system. As stage 2 
has no relevant effect on $j(c), 1 s js k -2, it follows from (26) that 

u,(c)=o*4;(c) '  ~ j ( c ) = o ~ ~ J ( c ) = o  f o r l s j s k - 2 ,  

subject to which (26) gives 

4 L - I ( C )  = 4k-I(C), 

4;,cc, = 4 , k - l ( O ) 4 k - I . I ( C ) +  4kI(C),  

4 L + l , O =  4 k + l , O .  
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However, only those terms in d ; ( c )  linear in cII  alone are relevant, and from (22) 
+ - l , l ( c )  has none, so that the transformation of 4 k ( C )  is irrelevant. Therefore, stage 
1 has no relevant effect whatever, and the tail may be simply discarded. 

The prescription. To find S k  up to quadratic degree, which requires only the Taylor 
coefficients {+J(c)},”:: to D(c2),  4 k , I ( C )  and &+1.0 of the original unfolding 4, procede 
as follows. 

(a) Find the tangent space of S k  from { 4 J , l ( c ) } , ” Z ; ,  and transform to orthogonal 
coordinates cI normal to S k  and c I I  tangential to s k .  This puts 4 , ( c )  into the form (cf 
(22)) 

4 , ( c )  = bjzc, + Q , ( C I , ) + H ( C I C I I ,  c ? ) + 0 ( c 3 )  
1 = I  

for l s j s k - 1 ,  where Q , ( C ~ ~ ) = H ( C ~ ~ ) .  

of increasing i for 1 s i s k - 1: 
(b) Solve the following triangular system of equations for C , ( C : ~ )  iteratively in order 

b,zc! =-~J(cl l )+SJ,~- ,k4Zk, l (CI=0,  C I I ) / 2 ( k + l ) 4 k + l , 0 7  ( 2 7 )  
, = I  

where b,, # 0 and 8,&l is the Kronecker symbol. 

coordinates and a physical application. First suppose 
We conclude with two examples, intended to illustrate respectively the change of 

d , ( C )  = 2-l’2(c1 - c , ) +  y , c : + .  . , , 

4 3 ( c ) =  ac1+Pc*+Y3C3+O(C2),  4 4 ( c )  =a+occ,, 
& ( c )  = 2Il2( C l  + 2c*) + y2c:  + . . . , 

where . . . means terms O ( c * )  other than c:. Then 4(s;  c )  has an A ,  singularity at the 
origin, i.e. a rib passes smoothly through 0 E R3. The normal coordinates are cI = ( E , ,  E 2 )  
where E ,  = 2-’12( c I  - c 2 )  and E2 = 2-’12( c ,  + c 2 ) .  The tangent coordinate is c I I  E3 = c3.  
Then 

& ( E )  = E,  + y , ; ; + .  . . , 
&3( E) = ;El + 

~ ~ ( E ) = - E I + ~ E ~ + Y ~ E : + . .  . ,  

+ y3?3 + o( E 2 )  
and equations ( 2 7 )  become 

- E ,  + 3?2 = -yz;: -3y3z: .  3 2  E,  = - y,;:, 

Therefore, the equation of the rib in the original coordinates is 

c I -  =2-1 ’2 (E~+El )=2 -1 ’2 [~y : -~ (4y I  + Y ~ ) ] c : + O ( C : ) ,  
C2’2-1/2(;z-;l) =2-1/2 I 2 [ZY3+f(2Y,  - Y * ) I c : + O ( c : ) .  

Our second example is related to that used in § 7 ,  and involves a ‘bivariate 
catastrophe’. Consider the evolute of the surface whose height in Cartesian coordinates 
is 

h ( x ,  y )  = x2+  ay*, a #  1 .  

It has ribs cutting the z axis at z =; and z = 1 / 2 a .  We will find the curvature at the z 
axis of the rib that cuts it at z = & .  The squared distance 4 ( x , y ;  X ,  Y , Z )  from the 
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point (x, y, h(x, y ) )  on the surface to (X, Y, 2 )  is given by 

4 = ( X  - x)2+ ( Y -y)2+ (2 - x2-  ay2)2 

= do - 2(Xx + Yy + Z ’ X 2 )  + vy2+ x4+ 2ax2y2 + a2y4 

where Z’= Z - +  and 77 = 1 - 2aZ = 1 - a - 2aZ’. The rib is obviously tangent to the 
y axis, so cI = (X, Z )  and cII  = Y. Therefore we need 4, and 42 only to linear degree 
in X and Z and quadratic degree in Y, and b3 only to linear degree in Y. 

As there are two state variables, we must first apply the splitting lemma, which 
amounts to reducing the y-dependence of 4 to normal form up to quadratic degree 
in its control variable Y. The y singularity is Morse or AI,  so 4 is required only up 
to D(y’) (because k = 1, m = 2 gives ( m  + l ) k  - 1 = 2, see § 5 ) .  Therefore, the relevant 
y-dependence of 4 is -2 Yy + Ay’, where A = A(x) = 77 + 2ax2. In normal form this 
is simply y”- Y2/A, where y‘= A”2(y-  Y/A), which is locally well defined because 
A(0) # 0. Then using the expansion l /A(x)  = 1/77 - 2 a ~ ’ / 7 7 ~ + 0 ( ~ ~ ) ,  the splitting 
lemma leads to 

4 = (40- Y2/T]) - 2 x x  + 2( a y 2 /  772 - Z ‘ ) X 2 +  o ( X 4 )  +y’2.  

Note that because there is no relevant & term, 4 4 , o  is not required either. Recalling 
that 7 = 1 - a - 2aZ‘, the rib is given to second degree by 

x = 0, Z ’ = a Y 2 / ( 1  - -a) ’ .  

This is clearly correct for a = 0, and gives infinite curvature in the limit a + 1. This 
is consistent with the fact that in this limit h(x, y )  is rotationally symmetric, and 
therefore so must its evolute be. In fact, this situation gives a highly unstable infinite 
codimension umbilic singularity (see figure A2.3 of Berry and Upstill (1980), figure 
41 of Berry (1981), figure 21 of Bruce et a1 (1984)). 
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